I am sure this question was posed as a retaliation to some students acting up. I changed the young modulus to that of steel $ 2*10^5$.
Part 1: Fully Restrained Expansion
Cross-section: $30 mm * 60 mm$
- Length (L): $200 mm$
- Compressive Force (P): $ 180kN = 180,000N $
- Young's Modulus (E): $2 \times 10^5 \text{ N/mm}^2$
- Poisson's Ratio ($\mu$): $0.3$
Calculate axial stress ($\sigma$):
$$ Area (A) = 30 * 60 = 1800 mm $$
$$ \sigma = \frac{P}{A} = \frac{180,000N}{1800 mm^2} = 100 N/mm^2 $$
Calculate the axial strain ($\epsilon_x$):
$$ \epsilon_{x} = \frac{\sigma}{E} =\frac{-100 N/mm^2}{2*10^5 N/mm^2} = -0.0005 $$
Calculate Change in Length ($\Delta L$):
$$\Delta L = \varepsilon_x \times L = -0.0005 \times 200 mm = -0.1 mm$$ Calculate Lateral Strain ($\varepsilon_y$, $\varepsilon_z$):
Since the 30 mm side is fully restrained,
$\epsilon_y = 0$.
$$\epsilon_z = -\mu \times \epsilon_x = -0.3 \times (-0.0005) = 0.00015$ (tensile)
$$
Calculate Change in Width ($\Delta z$):
$$\Delta z = \epsilon_z \times 60 mm = 0.00015 \times 60 mm = 0.009 mm (increase)
$$
Calculate Change in Thickness ($\Delta y$):}
Since the 30mm side is restrained, $\Delta y = 0 mm$.
Calculate Change in Volume ($\Delta V$):}
\begin{itemize}
\item Original Volume (V) = $30 mm \times 60 mm \times 200 mm = 360,000mm^3$
Final Volume (V') = $(30 mm \times (60.009 mm) \times (199.9 mm) = 359,946 tmm^3$
$\Delta V = V' - V = 359,946mm^3 - 360,000 mm^3 = -54mm^3$ (decrease)
$
Part 2: $50\%$ Restrained Expansion
Steps 2-4 are the same as in Part 1:
- $\sigma = 100mm^2$
- $\epsilon_x = -0.0005$
- $\Delta L = -0.1mm$
Calculate Lateral Strain ($\epsilon_y$):}
If fully unrestrained, $\epsilon_y = -\mu \times \epsilon_x = 0.00015$
With 50% restraint, $\epsilon_y = 0.5 \times (-\mu \times \epsilon_x) = 0.5 \times 0.00015 = 0.000075$
Calculate Change in Thickness ($\Delta y$):}
$\Delta y = \epsilon_y \times 30 mm = 0.000075 \times 30 mm = 0.00225 mm$ (increase)
Calculate Lateral Strain ($\epsilon_z$):}
$\epsilon_z = -\mu \times \epsilon_x = 0.00015$ (same as Part 1)
Calculate Change in Width ($\Delta z$):}
$\Delta z = \epsilon_z \times 60mm = 0.00015 \times 60 mm = 0.009 mm$ (same as Part 1)
Calculate Change in Volume ($\Delta V$):
Original Volume (V) = $360,000mm^3$
Final Volume (V') = $(30.00225 mm) \times (60.009mm) \times (199.9 mm) = 359,973 mm^3$
$\Delta V = V' - V = 359,973 mm^3 - 360,000 mm^3 = -27 mm^3$
Summary of Changes:
Fully Restrained:
- $\Delta L = -0.1 mm$
- $\Delta y = 0 mm$
- $\Delta z = 0.009 mm$
- $\Delta V = -54 mm^3$
$50\% $Restrained:
- $\Delta L = -0.1 mm$
- $\Delta y = 0.00225 mm$
- $\Delta z = 0.009 mm$
- $\Delta V = -27 mm^3$
I may have arethmatic errors; I did not check it!