Personally if it's a date, or can be a date, I suggest always storing it as one. It's just easier to work with as a rule of thumb.
- A date is 4 bytes.
- A smallint is 2 bytes (we need two)
- ... 2 bytes: one smallint for year
- ... 2 bytes: one smallint for month
You can have one date which will support day if you ever need it, or one smallint for year and month which will never support the extra precision.
Sample data
Let's look at an example now.. Let's create 1 million dates for our sample. This is approximately 5,000 rows for 200 years between 1901, and 2100. Every year should have something for every month.
CREATE TABLE foo
AS
SELECT
x,
make_date(year,month,1)::date AS date,
year::smallint,
month::smallint
FROM generate_series(1,1e6) AS gs(x)
CROSS JOIN LATERAL CAST(trunc(random()*12+1+x-x) AS int) AS month
CROSS JOIN LATERAL CAST(trunc(random()*200+1901+x-x) AS int) AS year
;
CREATE INDEX ON foo(date);
CREATE INDEX ON foo (year,month);
VACUUM FULL ANALYZE foo;
Testing
Simple WHERE
Now we can test these theories of not using date.. I ran each of these a few times so as to warm things up.
EXPLAIN ANALYZE SELECT * FROM foo WHERE date = '2014-1-1'
QUERY PLAN
--------------------------------------------------------------------------------------------------------------------------
Bitmap Heap Scan on foo (cost=11.56..1265.16 rows=405 width=14) (actual time=0.164..0.751 rows=454 loops=1)
Recheck Cond: (date = '2014-04-01'::date)
Heap Blocks: exact=439
-> Bitmap Index Scan on foo_date_idx (cost=0.00..11.46 rows=405 width=0) (actual time=0.090..0.090 rows=454 loops=1)
Index Cond: (date = '2014-04-01'::date)
Planning time: 0.090 ms
Execution time: 0.795 ms
Now, let's try the other method with them separate
EXPLAIN ANALYZE SELECT * FROM foo WHERE year = 2014 AND month = 1;
QUERY PLAN
--------------------------------------------------------------------------------------------------------------------------------
Bitmap Heap Scan on foo (cost=12.75..1312.06 rows=422 width=14) (actual time=0.139..0.707 rows=379 loops=1)
Recheck Cond: ((year = 2014) AND (month = 1))
Heap Blocks: exact=362
-> Bitmap Index Scan on foo_year_month_idx (cost=0.00..12.64 rows=422 width=0) (actual time=0.079..0.079 rows=379 loops=1)
Index Cond: ((year = 2014) AND (month = 1))
Planning time: 0.086 ms
Execution time: 0.749 ms
(7 rows)
In fairness, they're not all 0.749.. some are a bit more or less, but it doesn't matter. They're all relatively the same. It simply isn't needed.
Within one month
Now, let's have fun with it.. Let's say you want to find all intervals within 1 month of Jan 2014 (the same month we used above).
EXPLAIN ANALYZE
SELECT *
FROM foo
WHERE date
BETWEEN
('2014-1-1'::date - '1 month'::interval)::date
AND ('2014-1-1'::date + '1 month'::interval)::date;
QUERY PLAN
---------------------------------------------------------------------------------------------------------------------------
Bitmap Heap Scan on foo (cost=21.27..2310.97 rows=863 width=14) (actual time=0.384..1.644 rows=1226 loops=1)
Recheck Cond: ((date >= '2013-12-01'::date) AND (date <= '2014-02-01'::date))
Heap Blocks: exact=1083
-> Bitmap Index Scan on foo_date_idx (cost=0.00..21.06 rows=863 width=0) (actual time=0.208..0.208 rows=1226 loops=1)
Index Cond: ((date >= '2013-12-01'::date) AND (date <= '2014-02-01'::date))
Planning time: 0.104 ms
Execution time: 1.727 ms
(7 rows)
Compare that to the combined method
EXPLAIN ANALYZE
SELECT *
FROM foo
WHERE year = 2013 AND month = 12
OR ( year = 2014 AND ( month = 1 OR month = 2) );
QUERY PLAN
--------------------------------------------------------------------------------------------------------------------------------------------
Bitmap Heap Scan on foo (cost=38.79..2999.66 rows=1203 width=14) (actual time=0.664..2.291 rows=1226 loops=1)
Recheck Cond: (((year = 2013) AND (month = 12)) OR (((year = 2014) AND (month = 1)) OR ((year = 2014) AND (month = 2))))
Heap Blocks: exact=1083
-> BitmapOr (cost=38.79..38.79 rows=1237 width=0) (actual time=0.479..0.479 rows=0 loops=1)
-> Bitmap Index Scan on foo_year_month_idx (cost=0.00..12.64 rows=421 width=0) (actual time=0.112..0.112 rows=402 loops=1)
Index Cond: ((year = 2013) AND (month = 12))
-> BitmapOr (cost=25.60..25.60 rows=816 width=0) (actual time=0.218..0.218 rows=0 loops=1)
-> Bitmap Index Scan on foo_year_month_idx (cost=0.00..12.62 rows=420 width=0) (actual time=0.108..0.108 rows=423 loops=1)
Index Cond: ((year = 2014) AND (month = 1))
-> Bitmap Index Scan on foo_year_month_idx (cost=0.00..12.38 rows=395 width=0) (actual time=0.108..0.108 rows=401 loops=1)
Index Cond: ((year = 2014) AND (month = 2))
Planning time: 0.256 ms
Execution time: 2.421 ms
(13 rows)
It's both slower, and uglier.
GROUP BY/ORDER BY
Combined method,
EXPLAIN ANALYZE
SELECT date, count(*)
FROM foo
GROUP BY date
ORDER BY date;
QUERY PLAN
--------------------------------------------------------------------------------------------------------------------------
Sort (cost=20564.75..20570.75 rows=2400 width=4) (actual time=286.749..286.841 rows=2400 loops=1)
Sort Key: date
Sort Method: quicksort Memory: 209kB
-> HashAggregate (cost=20406.00..20430.00 rows=2400 width=4) (actual time=285.978..286.301 rows=2400 loops=1)
Group Key: date
-> Seq Scan on foo (cost=0.00..15406.00 rows=1000000 width=4) (actual time=0.012..70.582 rows=1000000 loops=1)
Planning time: 0.094 ms
Execution time: 286.971 ms
(8 rows)
And again with the composite method
EXPLAIN ANALYZE
SELECT year, month, count(*)
FROM foo
GROUP BY year, month
ORDER BY year, month;
QUERY PLAN
--------------------------------------------------------------------------------------------------------------------------
Sort (cost=23064.75..23070.75 rows=2400 width=4) (actual time=336.826..336.908 rows=2400 loops=1)
Sort Key: year, month
Sort Method: quicksort Memory: 209kB
-> HashAggregate (cost=22906.00..22930.00 rows=2400 width=4) (actual time=335.757..336.060 rows=2400 loops=1)
Group Key: year, month
-> Seq Scan on foo (cost=0.00..15406.00 rows=1000000 width=4) (actual time=0.010..70.468 rows=1000000 loops=1)
Planning time: 0.098 ms
Execution time: 337.027 ms
(8 rows)
Conclusion
Generally, let the smart people do the hard work. Datemath is hard, my clients don't pay me enough. I used to do these tests. I was hard pressed to ever conclude that I could get better results than date. I stopped trying.
UPDATES
@a_horse_with_no_name suggested for my within one month test WHERE (year, month) between (2013, 12) and (2014,2). In my opinion, while cool that's a more complex query and I'd rather avoid it unless there was a gain. Alas, it was still slower though it's close -- which is more of the take away from this test. It simply doesn't matter much.
EXPLAIN ANALYZE
SELECT *
FROM foo
WHERE (year, month) between (2013, 12) and (2014,2);
QUERY PLAN
--------------------------------------------------------------------------------------------------------------------------------------
Bitmap Heap Scan on foo (cost=5287.16..15670.20 rows=248852 width=14) (actual time=0.753..2.157 rows=1226 loops=1)
Recheck Cond: ((ROW(year, month) >= ROW(2013, 12)) AND (ROW(year, month) <= ROW(2014, 2)))
Heap Blocks: exact=1083
-> Bitmap Index Scan on foo_year_month_idx (cost=0.00..5224.95 rows=248852 width=0) (actual time=0.550..0.550 rows=1226 loops=1)
Index Cond: ((ROW(year, month) >= ROW(2013, 12)) AND (ROW(year, month) <= ROW(2014, 2)))
Planning time: 0.099 ms
Execution time: 2.249 ms
(7 rows)